INTRODUCTION:
Neurodegenerative diseases are caused by progressive loss of specific neurons and are mostly age-related human diseases. People developing neurodegeneration are usually asymptomatic during the development of disease. Parkinson's disease is second most common neurodegenerative disorder which occurs due to the loss of specific neurons i.e., dopaminergic neurons of substantia nigra pars compacta and striatum resulting motor/movement disability. The identification of mutations associated with familial disease as well as effect of environmental toxins lead to the development of many in vivo and in vitro models. As the susceptibility of dopamine producing neurons to environmental toxins is conserved between humans and Drosophila melanogaster, it is one of the animal models which has been used extensively for the study of Parkinson's disease.4,5

1.1. Drosophila Melanogaster
Kingdom: Animalia
Phylum: Atthropoda
Class: Insecta
Family: Drosophilidae
Genus: Drosophila
Species: Melanogaster

Drosophila melanogaster is a Dipteran (having one pair of wings and one reduced pair for balancing). Diversification from mosquito occurred millions of years ago. 4 pairs of chromosomes are a characteristic of D. melanogaster. With life span ranging from 50-60 days, it varies from strain to strain.

Canton S strain is the employed strain in our work because of its low mutation rate. It has a life span of around 60 days. Primarily used for genetic studies, now also applied in neurodegenerative diseases, alcohol withdrawal studies, cancer studies, drug abuse studies, oxidative stress and ageing, and many more. 75% of known human disease genes have a recognizable match in genome of fruit fly. 50% of fly protein sequences have human homologs.

KEYWORDS
Parkinson's disease, Drosophila Melanogaster, Costus Ignous

1.3 Costus igneus
Botanical name- Costus igneus
Domain- Eukaryota
Kingdom- Plantae
Phylum- Tracheophyta
Subphylum- Euphylophitina
Superorder- Zingiberales
Order- Zingiberidae
Family- Costaceae
Subfamily- Asteroideae
Genus Costus
Specific epithet- igneus

Costus igneus belongs to the family Costaceae, commonly known as insulin plant in India because its leaves help to build up insulin in the human body. Insulin plant is one such traditional plant which is getting global acceptance nowadays and is now widely used as an ayurvedic medicinal herb. Insulin plant is native to Southeast Asia, especially on the Greater Sunda Islands in Indonesia. It is relatively a new entrant to India and is being grown as an ornamental plant in Kerala.6

Ethanolic extract of Costus igneus was able to produce a significant effect on learning and memory in diabetic rats.7

METHODS:
2.1 CLIMBING ASSAY
The Drosophila adult brain has been characterized to contain clusters of dopaminergic neurons. Chronic exposure to Rotenone, a mitochondrial complex I inhibitor, results in the development of characters present in sporadic Parkinson’s disease. It results in neurodegeneration and motor deficits due to selective loss of dopaminergic neuron loss in all the brain clusters. Motor deficits in Drosophila is assessed by their ability to climb or fly negatively geotactic to a pre-set height.

2.2 Drosophila Grouping:

<table>
<thead>
<tr>
<th>30 flies per group</th>
<th>Described media</th>
<th>Rotenone</th>
<th>L-Dopa</th>
<th>Study drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy control</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diseased Control</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Positive Control</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Study Group</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

2.3. Estimation Of Malondialdehyde By Okhawa Et Al Method
Malondialdehyde is an inflammatory marker. Rotenone causes oxidative stress and a minute oxidative stress causes rise in levels of...
malondialdehyde. The drug prepared is expected to reduce the oxidative stress. And that in turn will reduce the loss of neurons.

OBSERVATIONS AND RESULTS:

3.1: CLIMBING ASSAY

3.1.1 Mean and Standard Deviations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Disease Control</th>
<th>Healthy Control</th>
<th>L-Dopa</th>
<th>Study Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>11.66 ±1.52</td>
<td>30 ±0</td>
<td>22.33 ±1.52</td>
<td>18.33 ±0.57</td>
</tr>
</tbody>
</table>

Error bar is an indication of standard deviation.

3.2 : MDA ASSAY

3.2.1 Mean and Standard Deviations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Disease Control</th>
<th>Healthy Control</th>
<th>L-Dopa</th>
<th>Study Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean± SD (µM/mg)</td>
<td>10.66±0.15</td>
<td>6.53±0.14</td>
<td>8.15±0.05</td>
<td>10.24±0.04</td>
</tr>
</tbody>
</table>

Error bar is an indication of standard deviation.

DISCUSSION:

Canton S strain of *D.melanogaster* was employed as a model organism in this study. 4 groups having 30 flies in triplets were used in this experimental work-healthy control, diseased control, positive control & study drug. Climbing assay and oxidative stress parameter malondialdehyde were determining forces in the nature of this work.

CONCLUSION:

Our findings provide resourceful documentation in the neuroprotective role of *C.igneus*. No of flies crossing over median line in 45 seconds increased slightly in the study drug group. Malondialdehyde assay results prove claim that oxidative stress was reduced which is indicative of reduced neural damage.

ACKNOWLEDGEMENT:

We would like to thank our guide, Dr.Rekha Dhamnaskar, who is the pillar of strength and support in our lives. Secondly, we thank Mr.Arun Shankar for providing his expertise in the field of drosophila. We are grateful and thankful to all the people who have helped us directly or indirectly in this endeavour.

REFERENCES

